Constructive enumeration and uniform random sampling of DAGs

Antoine Genitrini¹ > Martin Pépin¹ Alfredo Viola² Work submitted to the LAGOS conference December 10, 2020

¹LIP6 — Sorbonne Université — Paris

 2 Universidad de la República — Montevideo

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

- > A finite set of vertices *V* e.g. *{*1*,* 2*, . . . , n}*;
- > a set of directed edges *E ⊆ V × V*;
- $>$ no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.

- > A finite set of vertices *V* e.g. *{*1*,* 2*, . . . , n}*;
- > a set of directed edges *E ⊆ V × V*;
- $>$ no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.

- > A finite set of vertices *V* e.g. *{*1*,* 2*, . . . , n}*;
- > a set of directed edges *E ⊆ V × V*;
- $>$ no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.
- > If considered up to relabelling: unlabelled DAGs

- > A finite set of vertices *V* e.g. *{*1*,* 2*, . . . , n}*;
- > a set of directed edges *E ⊆ V × V*;
- $>$ no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.
- > If considered up to relabelling: unlabelled DAGs

Labelled DAGs:

> Counting by number of vertices: [Rob73]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]
- > Uniform sampling: [MDB01], [KM15]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]
- > Uniform sampling: [MDB01], [KM15]

Unlabelled DAGs:

> Counting by vertices and sources: [Rob77]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96] *•*
- > Uniform sampling: [MDB01], [KM15]

Unlabelled DAGs:

> Counting by vertices and sources: [Rob77] *•*

Problems:

• Inclusion-exclusion

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96] *•*
- > Uniform sampling: [MDB01], [KM15] *•*

Unlabelled DAGs:

> Counting by vertices and sources: [Rob77] *•*

Problems:

- *•* Inclusion-exclusion
- *•* No or little control over the number of edges

> Finer control over the number of edges?

> Sampling of unlabelled structures?

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

Directed Ordered Acyclic Graphs (DOAGs)

- DOAG = Unlabelled DAG
	- + a total order on the outgoing edges of each vertex
	- + only one sink and one source

 $\ddot{}$ Real-life implementations of DAGs have an ordering;

struct vertex { int out_degree; struct vertex *out_edges; };

→

 \rightarrow Real-life implementations of DAGs have an ordering;

struct vertex { int out_degree; struct vertex *out_edges; };

→

 \geq The memory layout of trees with hash-consing have an ordering;

 $\ddot{}$ Real-life implementations of DAGs have an ordering;

struct vertex { int out_degree; struct vertex *out edges; };

→

 $\overline{}$ The memory layout of trees with hash-consing have an ordering;

> Models unlabelled objects.

q edges to sources;

q edges to sources;

s edges to internal vertices;

 $s + q$ *q*

q edges to **sources**;

s edges to internal vertices;

 \setminus *s*! ways to arrange the two sets of edges;

q edges to sources;

s edges to internal vertices;

 $s + q$ *q* \setminus *s*! ways to arrange the two sets of edges;

 $D_{n,m,k} = #$ DOAGs with *n* vertices, *m* edges, *k* sources $(s+q)$ $(n-k-q)$

$$
= \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} \binom{s+q}{s} \binom{n-1-q}{s} s!
$$

Complexity of the counting

$$
D_{1,m,k} = 1_{\{m=0 \land k=1\}}
$$

\n
$$
D_{n,m,k} = 0
$$
 when $k \le 0$
\n
$$
D_{n,m,k} = \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!
$$
 when $n > 1$

Complexity of the counting

$$
D_{1,m,k} = 1_{\{m=0 \land k=1\}}
$$

\n
$$
D_{n,m,k} = 0
$$
 when $k \le 0$
\n
$$
D_{n,m,k} = \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!
$$
 when $n > 1$

Complexity

Computing $D_{n,m,k}$ for all $n, k \leq N$ and $m \leq M$ takes $O(N^4M)$ arithmetic operations.

Complexity of the counting

$$
D_{1,m,k} = 1_{\{m=0 \land k=1\}}
$$

\n
$$
D_{n,m,k} = 0
$$
 when $k \le 0$
\n
$$
D_{n,m,k} = \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!
$$
 when $n > 1$

Complexity

Computing $D_{n,m,k}$ for all $n, k \leq N$ and $m \leq M$ takes $O(N^4M)$ arithmetic operations.

In practice we reach $M = 400$, $N = M + 1$.

Do the same, but backwards.

1. Select (*s, q*) with probability *^Dn−*1*,m−s−q,k−*1+*q*(*s*+*q s*)(*ⁿ−k−^q s*)*s*! $\frac{D_{n,m,k}}{D_{n,m,k}}$

- 1. Select (*s, q*) with probability *^Dn−*1*,m−s−q,k−*1+*q*(*s*+*q s*)(*ⁿ−k−^q s*)*s*! $\frac{D_{n,m,k}}{D_{n,m,k}}$
- 2. Sample a DOAG*ⁿ−*1*,m−s−q,k−*1+*^q* recursively;

- 1. Select (*s, q*) with probability *^Dn−*1*,m−s−q,k−*1+*q*(*s*+*q s*)(*ⁿ−k−^q s*)*s*! $\frac{D_{n,m,k}}{D_{n,m,k}}$
- 2. Sample a DOAG*ⁿ−*1*,m−s−q,k−*1+*^q* recursively;
- 3. We already know the *q* largest sources;

- 1. Select (*s, q*) with probability *^Dn−*1*,m−s−q,k−*1+*q*(*s*+*q s*)(*ⁿ−k−^q s*)*s*! $\frac{D_{n,m,k}}{D_{n,m,k}}$
- 2. Sample a DOAG*ⁿ−*1*,m−s−q,k−*1+*^q* recursively;
- 3. We already know the *q* largest sources;
- 4. Choose *s* internal vertices;

- 1. Select (*s, q*) with probability *^Dn−*1*,m−s−q,k−*1+*q*(*s*+*q s*)(*ⁿ−k−^q s*)*s*! $\frac{D_{n,m,k}}{D_{n,m,k}}$
- 2. Sample a DOAG*ⁿ−*1*,m−s−q,k−*1+*^q* recursively;
- 3. We already know the *q* largest sources;
- 4. Choose *s* internal vertices;
- 5. Connect them to the new sources.

1. Pick an *x* \sim UNIF($[0; D_{n,m,k} - 1]$);

1. Pick an *x* \sim UNIF($[0; D_{n,m,k} - 1]$);

2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} \binom{s+q}{s}$ *s*)(*ⁿ−k−^q s*) *s*!;

- 1. Pick an *x* \sim UNIF($[0; D_{n,m,k} 1]$);
- 2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} \binom{s+q}{s}$ *s*)(*ⁿ−k−^q s*) *s*!;
- 3. stop as soon as the sum becomes $> x$;

- 1. Pick an $x \sim$ UNIF($[[0; D_{n,m,k} 1]]$);
- 2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} \binom{s+q}{s}$ *s*)(*ⁿ−k−^q s*) *s*!;
- 3. stop as soon as the sum becomes $> x$;
- 4. (bonus) sum in the lexicographic order for $(s + q, s)$.

Complexity of the sampling algorithm

- $>$ Selecting *s* and *q*: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity of the sampling algorithm

- $>$ Selecting *s* and *q*: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity

Sampling a DOAG uniformly at random costs $O(\sum_{\mathsf{v}}d_{\mathsf{v}}^2)$ arithmetic operations where *v* ranges over the vertices of the output and *d^v* is the out-degree of *v*.

Complexity of the sampling algorithm

- $>$ Selecting *s* and *q*: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity

Sampling a DOAG uniformly at random costs $O(\sum_{\mathsf{v}}d_{\mathsf{v}}^2)$ arithmetic operations where *v* ranges over the vertices of the output and *d^v* is the out-degree of *v*.

In practice it takes a few milliseconds.

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

$$
D_{n,m,k} = \sum_{0 < s+q} D_{n-1,m-s-q,k-1+q} \binom{s+q}{s} \binom{n-k-q}{s} s!
$$

$$
D_{n,m,k}^{(d)} = \sum_{0 < s+q \leq d} D_{n-1,m-s-q,k-1+q}^{(d)} {s+q \choose s} {n-k-q \choose s} s!
$$

$$
D_{n,m,k}^{(d)} = \sum_{0 < s+q \le d} D_{n-1,m-s-q,k-1+q}^{(d)} \binom{s+q}{s} \binom{n-k-q}{s} s!
$$

> Counting: *O*(*N* 2*d* 4) arithmetic operations.

$$
D_{n,m,k}^{(d)} = \sum_{0 < s+q \le d} D_{n-1,m-s-q,k-1+q}^{(d)} \binom{s+q}{s} \binom{n-k-q}{s} s!
$$

- > Counting: *O*(*N* 2*d* 4) arithmetic operations.
- > Sampling *O*(*Nd*²) arithmetic operations.

$$
D_{n,m,k}^{(d)} = \sum_{0 < s+q \le d} D_{n-1,m-s-q,k-1+q}^{(d)} \binom{s+q}{s} \binom{n-k-q}{s} s!
$$

- > Counting: *O*(*N* 2*d* 4) arithmetic operations.
- > Sampling *O*(*Nd*²) arithmetic operations.
- $>$ In practice we reached $m = 1500$ with $d = 2$ and $m = 1000$ with $d = 10$.

Your next favourite wallpaper

Uniform DOAG with $m = 1000$ edges and with out-degree bounded by $d = 10$.

The classical way to count is by a *layer-by-layer* approach.

 $A_{n,k} = \text{\#DAGs}$ with *n* vertices, *k* sources

The classical way to count is by a *layer-by-layer* approach.

 $A_{n,k} = #DAGs$ with *n* vertices, *k* sources $A_{n,k} =$ (*n k* $\sqrt{2}$ *j>*0 *A*_{*n−k,j*} · (2^{*k*} − 1)^{*j*} · 2^{*k*(*n*−*k−j*)}

$$
A_{n,k} = \text{\#DAGs with } n \text{ vertices, } k \text{ sources}
$$
\n
$$
A_{n,k} = \binom{n}{k} \sum_{j>0} A_{n-k,j} \cdot \left(2^k - 1\right)^j \cdot 2^{k(n-k-j)}
$$

- > How to count by number of edges?
- > How to enforce connectivity (e.g. with one sink and one source)?

$$
A_{n,k} = \text{\#DAGs with } n \text{ vertices, } k \text{ sources}
$$
\n
$$
A_{n,k} = \binom{n}{k} \sum_{j>0} A_{n-k,j} \cdot \left(2^k - 1\right)^j \cdot 2^{k(n-k-j)}
$$

- > How to count by number of edges?
- > How to enforce connectivity (e.g. with one sink and one source)?
	- \rightarrow Use our approach!

Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

 $A_{n,m,k} = \text{\#DAGs}$ (one sink, *k* sources)

Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

$$
A_{n,m,k} = #DAGs (one sink, k sources)
$$

\n
$$
k \cdot A_{n,m,k} =
$$

\n
$$
n \cdot \sum_{s+q>0} A_{n-1,m-s-q,k-1+q} {k-1+q \choose q} {n-q-k \choose s}
$$

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

- > Finer control over the number of edges?
- > Sampling of unlabelled structures?

- > Finer control over the number of edges? ✓
- > Sampling of unlabelled structures?

- > Finer control over the number of edges? ✓
- > Sampling of unlabelled structures? ➡ We made one step forward

- > Finer control over the number of edges? ✓
- > Sampling of unlabelled structures? ➡ We made one step forward

We presented:

- > a new model of DAGs: DOAGs;
- > a new way of counting.
- > Can we get rid of the one-sink-one-source constraint while retaining weak connectivity?
- > Is there a symbolic method operator hidden behind the vertex-by-vertex decomposition?
- > Asymptotics?
- > Can we get closer to sampling regular unlabelled DAGs?

Thank you for your attention!

References i

I. M. Gessel. 晶

Counting acyclic digraphs by sources and sinks. *Discrete Mathematics*, 160(1):253 – 258, 1996.

- **J.** Kuipers and G. Moffa. Uniform random generation of large acyclic digraphs. *Stat. and Computing*, 25(2):227–242, 2015.
- G. Melançon, I. Dutour, and M. Bousquet-Mélou. Random generation of directed acyclic graphs. *Electron. Notes Discret. Math.*, 10:202–207, 2001.

R.W. Robinson. Ħ

Counting labeled acyclic digraphs.

New Directions in the Theory of Graphs, pages 239–273, 1973.

R. W. Robinson.

Counting unlabeled acyclic digraphs.

In *Combinatorial Mathematics V*, Lecture Notes in Mathematics, pages 28–43. Springer, 1977.