Constructive enumeration and uniform random sampling of DAGs

Antoine Genitrini¹ > Martin Pépin¹ Alfredo Viola²

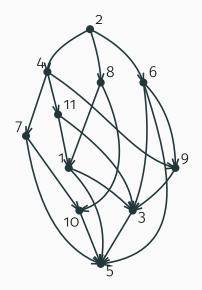
Work submitted to the LAGOS conference

December 10, 2020

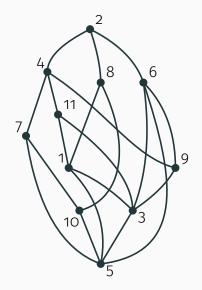
¹LIP6 — Sorbonne Université — Paris

²Universidad de la República — Montevideo

Outline

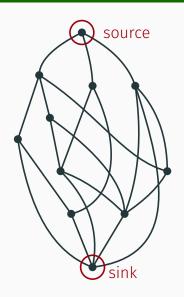

Background

Directed Ordered Acyclic Graphs


Extensions

Conclusion and future work


- > A finite set of vertices V e.g. $\{1, 2, ..., n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_n = V_1$.


- > A finite set of vertices V e.g. $\{1, 2, ..., n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_n = V_1$.

- > A finite set of vertices V e.g. $\{1, 2, ..., n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.
- > If considered up to relabelling: unlabelled DAGs

- > A finite set of vertices V e.g. $\{1, 2, ..., n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_n = V_1$.
- > If considered up to relabelling: unlabelled DAGs

Labelled DAGs:

> Counting by number of vertices: [Rob73]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]
- > Uniform sampling: [MDB01], [KM15]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]
- > Uniform sampling: [MDB01], [KM15]

Unlabelled DAGs:

> Counting by vertices and sources: [Rob77]

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96] •
- > Uniform sampling: [MDB01], [KM15]

Unlabelled DAGs:

> Counting by vertices and sources: [Rob77] •

Problems:

Inclusion-exclusion

Labelled DAGs:

- > Counting by number of vertices: [Rob73]
- Counting by number of edges: [Ges96] •
- > Uniform sampling: [MDB01], [KM15] •

Unlabelled DAGs:

> Counting by vertices and sources: [Rob77] •

Problems:

- Inclusion-exclusion
- No or little control over the number of edges

Still missing

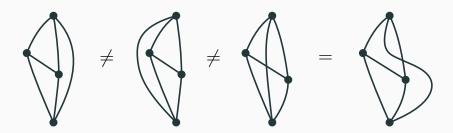
- > Finer control over the number of edges?
- > Sampling of unlabelled structures?

Outline

Background

Directed Ordered Acyclic Graphs

Extensions


Conclusion and future work

A new kind of DAG

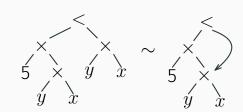
Directed Ordered Acyclic Graphs (DOAGs)

DOAG = Unlabelled DAG

- + a total order on the **outgoing** edges of each vertex
- + only one sink and one source

Motivation

> Real-life implementations of DAGs have an **ordering**;

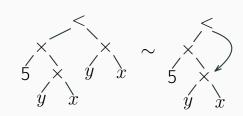

```
struct vertex {
  int          out_degree;
  struct vertex *out_edges;
};
```

Motivation

> Real-life implementations of DAGs have an **ordering**;

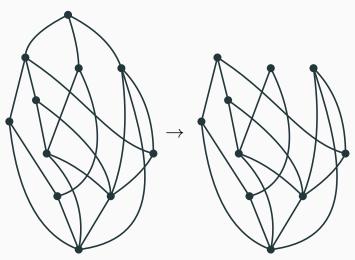
```
struct vertex {
   int        out_degree;
   struct vertex *out_edges;
};
```

> The memory layout of trees with hash-consing have an **ordering**;

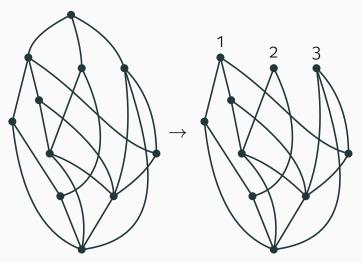


Motivation

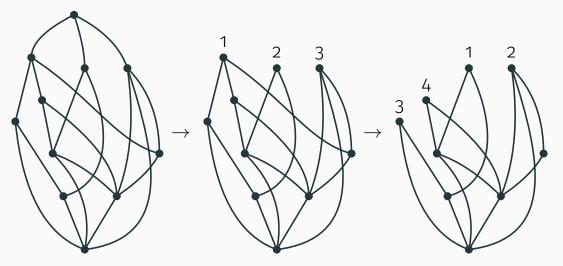
> Real-life implementations of DAGs have an **ordering**;

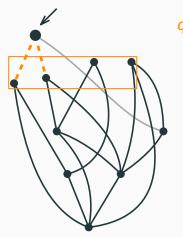

```
struct vertex {
   int         out_degree;
   struct vertex *out_edges;
};
```

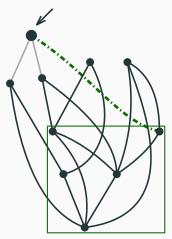
The memory layout of trees with hash-consing have an **ordering**;

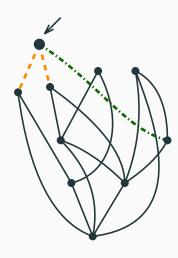


> Models **unlabelled** objects.

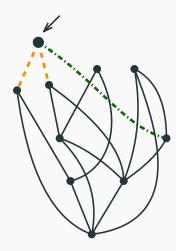

Idea: remove the source and see what is left.


Idea: remove the source and see what is left.


Idea: remove the source and see what is left.



q edges to sources;


q edges to sources;s edges to internal vertices;

q edges to sources;

s edges to internal vertices;

$$\binom{s+q}{q}$$
s! ways to arrange the two sets of edges;

q edges to sources;

s edges to internal vertices;

$$\binom{s+q}{q}s!$$
 ways to arrange the two sets of edges;

 $D_{n,m,k} = \#DOAGs$ with n vertices, m edges, k sources

$$= \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!$$

Complexity of the counting

$$\begin{split} D_{1,m,k} &= \mathbb{1}_{\{m=0 \land k=1\}} \\ D_{n,m,k} &= 0 & \text{when } k \leq 0 \\ D_{n,m,k} &= \sum_{s+a>0} D_{n-1,m-s-q,k-1+q} \binom{s+q}{s} \binom{n-k-q}{s} s! & \text{when } n>1 \end{split}$$

Complexity of the counting

$$\begin{split} D_{1,m,k} &= 1\!\!1_{\{m=0 \land k=1\}} \\ D_{n,m,k} &= 0 & \text{when } k \leq 0 \\ D_{n,m,k} &= \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} \binom{s+q}{s} \binom{n-k-q}{s} s! & \text{when } n>1 \end{split}$$

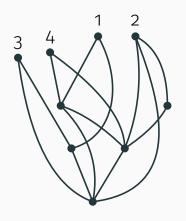
Complexity

Computing $D_{n,m,k}$ for all $n, k \le N$ and $m \le M$ takes $O(N^4M)$ arithmetic operations.

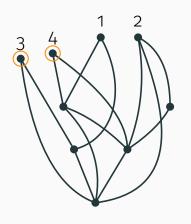
Complexity of the counting

$$D_{1,m,k} = 1_{\{m=0 \land k=1\}}$$

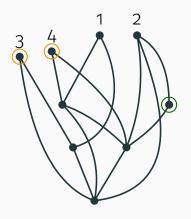
$$D_{n,m,k} = 0 \qquad \text{when } k \le 0$$

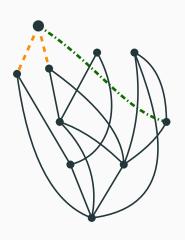

$$D_{n,m,k} = \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} \binom{s+q}{s} \binom{n-k-q}{s} s! \qquad \text{when } n>1$$

Complexity


Computing $D_{n,m,k}$ for all $n, k \leq N$ and $m \leq M$ takes $O(N^4M)$ arithmetic operations.

In practice we reach M = 400, N = M + 1.


1. Select
$$(s,q)$$
 with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{s+q}{s}\binom{n-k-q}{s}s!}{D_{n,m,k}}$;


- 1. Select (s,q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{s+q}{s}\binom{n-k-q}{s}s!}{D_{n,m,k}}$;
- 2. Sample a DOAG $_{n-1,m-s-q,k-1+q}$ recursively;

- 1. Select (s,q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{s+q}{s}\binom{n-k-q}{s}s!}{D_{n,m,k}}$;
- 2. Sample a DOAG $_{n-1,m-s-q,k-1+q}$ recursively;
- 3. We already know the q largest sources;

- 1. Select (s,q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{s+q}{s}\binom{n-k-q}{s}s!}{D_{n,m,k}}$;
- 2. Sample a DOAG $_{n-1,m-s-q,k-1+q}$ recursively;
- 3. We already know the q largest sources;
- 4. Choose s internal vertices;

- 1. Select (s,q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{s+q}{s}\binom{n-k-q}{s}s!}{D_{n,m,k}}$;
- 2. Sample a DOAG_{n-1,m-s-q,k-1+q} recursively;
- 3. We already know the q largest sources;
- 4. Choose s internal vertices;
- 5. Connect them to the new sources.

How to select s and q?

How to select s and q?

1. Pick an $x \sim \text{UNIF}([0; D_{n,m,k} - 1]);$

How to select s and q?

- 1. Pick an $x \sim \text{UNIF}([0; D_{n,m,k} 1]);$
- 2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!;$

How to select s and q?

- 1. Pick an $x \sim \text{UNIF}([0; D_{n,m,k} 1]);$
- 2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!;$
- 3. stop as soon as the sum becomes > x;

How to select s and q?

- 1. Pick an $x \sim \text{UNIF}([0; D_{n,m,k} 1]);$
- 2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!;$
- 3. stop as soon as the sum becomes > x;
- 4. (bonus) sum in the lexicographic order for (s + q, s).

Complexity of the sampling algorithm

- > Selecting s and q: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity of the sampling algorithm

- > Selecting s and q: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity

Sampling a DOAG uniformly at random costs $O(\sum_{v} d_{v}^{2})$ arithmetic operations where v ranges over the vertices of the output and d_{v} is the out-degree of v.

Complexity of the sampling algorithm

- > Selecting s and q: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity

Sampling a DOAG uniformly at random costs $O(\sum_{v} d_{v}^{2})$ arithmetic operations where v ranges over the vertices of the output and d_{v} is the out-degree of v.

In practice it takes a few milliseconds.

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

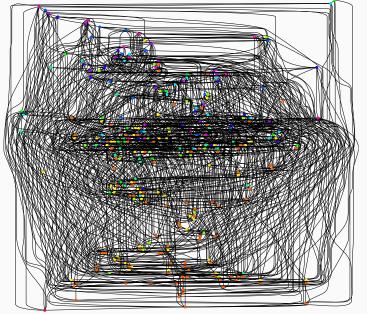
$$D_{n,m,k} = \sum_{0 < s+q} D_{n-1,m-s-q,k-1+q} {s+q \choose s} {n-k-q \choose s} s!$$

$$D_{n,m,k}^{(\mathbf{d})} = \sum_{0 < s+q \leq \mathbf{d}} D_{n-1,m-s-q,k-1+q}^{(\mathbf{d})} {s+q \choose s} {n-k-q \choose s} s!$$

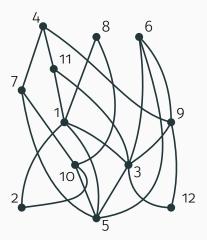
What if we want DOAGs with maximum out-degree d?

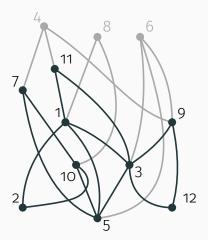
$$D_{n,m,k}^{(\mathbf{d})} = \sum_{0 < s+q \le \mathbf{d}} D_{n-1,m-s-q,k-1+q}^{(\mathbf{d})} {s+q \choose s} {n-k-q \choose s} s!$$

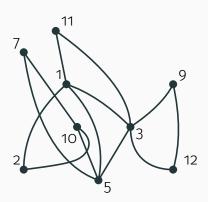
> Counting: $O(N^2d^4)$ arithmetic operations.

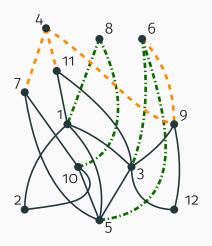

$$D_{n,m,k}^{(\mathbf{d})} = \sum_{0 < s+q \le \mathbf{d}} D_{n-1,m-s-q,k-1+q}^{(\mathbf{d})} {s+q \choose s} {n-k-q \choose s} s!$$

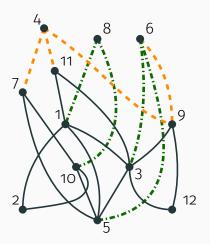
- > Counting: $O(N^2d^4)$ arithmetic operations.
- > Sampling $O(Nd^2)$ arithmetic operations.


$$D_{n,m,k}^{(d)} = \sum_{0 < s+q \le d} D_{n-1,m-s-q,k-1+q}^{(d)} {s+q \choose s} {n-k-q \choose s} s!$$

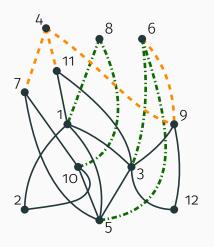

- > Counting: $O(N^2d^4)$ arithmetic operations.
- > Sampling $O(Nd^2)$ arithmetic operations.
- > In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.


Your next favourite wallpaper


Uniform DOAG with m = 1000 edges and with out-degree bounded by d = 10.



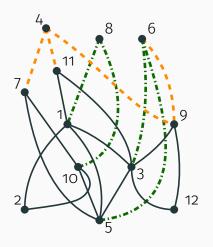
The classical way to count is by a *layer-by-layer* approach.


 $A_{n,k} = \#DAGs$ with n vertices, k sources

$$A_{n,k} = \# DAGs \text{ with } n \text{ vertices, } k \text{ sources}$$

$$A_{n,k} = \binom{n}{k} \sum_{i>0} A_{n-k,j} \cdot (2^k - 1)^j \cdot 2^{k(n-k-j)}$$

The classical way to count is by a *layer-by-layer* approach.

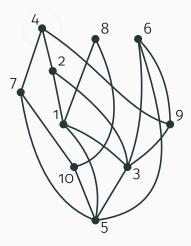


 $A_{n,k} = \#DAGs$ with n vertices, k sources

$$A_{n,k} = \binom{n}{k} \sum_{j>0} A_{n-k,j} \cdot (2^k - 1)^j \cdot 2^{k(n-k-j)}$$

- > How to count by number of edges?
- > How to enforce connectivity (e.g. with one sink and one source)?

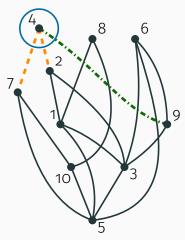
The classical way to count is by a *layer-by-layer* approach.


 $A_{n,k} = \#DAGs$ with n vertices, k sources

$$A_{n,k} = \binom{n}{k} \sum_{j>0} A_{n-k,j} \cdot (2^k - 1)^j \cdot 2^{k(n-k-j)}$$

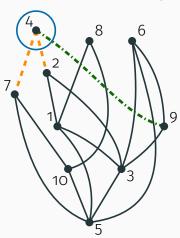
- > How to count by number of edges?
- > How to enforce connectivity (e.g. with one sink and one source)?
 - → Use our approach!

Vertex-by-vertex decomposition of labelled DAGs


Idea: mark one source, and remove it.

 $A_{n,m,k} = \#DAGs$ (one sink, k sources)

Vertex-by-vertex decomposition of labelled DAGs


Idea: mark one source, and remove it.

 $A_{n,m,k} = \#DAGs$ (one sink, k sources)

Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

$$A_{n,m,k} = \#DAGs$$
 (one sink, k sources)

$$k \cdot A_{n,m,k} =$$

$$n \cdot \sum_{s+q>0} A_{n-1,m-s-q,k-1+q} {k-1+q \choose q} {n-q-k \choose s}$$

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

Initial questions:

- > Finer control over the number of edges?
- > Sampling of unlabelled structures?

Initial questions:

- > Finer control over the number of edges? \checkmark
- > Sampling of unlabelled structures?

Initial questions:

- > Finer control over the number of edges? ✓
- > Sampling of unlabelled structures? → We made one step forward

Initial questions:

- > Finer control over the number of edges? ✓
- > Sampling of unlabelled structures? → We made one step forward

We presented:

- > a new model of DAGs: DOAGs;
- > a new way of counting.

Future work

- > Can we get rid of the one-sink-one-source constraint while retaining weak connectivity?
- > Is there a symbolic method operator hidden behind the vertex-by-vertex decomposition?
- > Asymptotics?
- > Can we get closer to sampling regular unlabelled DAGs?

Thank you for your attention!

References i

- I. M. Gessel.

 Counting acyclic digraphs by sources and sinks.

 Discrete Mathematics, 160(1):253 258, 1996.
- J. Kuipers and G. Moffa.

 Uniform random generation of large acyclic digraphs.

 Stat. and Computing, 25(2):227–242, 2015.
- G. Melançon, I. Dutour, and M. Bousquet-Mélou. Random generation of directed acyclic graphs. *Electron. Notes Discret. Math.*, 10:202–207, 2001.

References ii

Counting labeled acyclic digraphs.

New Directions in the Theory of Graphs, pages 239–273, 1973.

R. W. Robinson.

Counting unlabeled acyclic digraphs.

In *Combinatorial Mathematics V*, Lecture Notes in Mathematics, pages 28–43. Springer, 1977.