
Constructive enumeration and uniform random
sampling of DAGs

Antoine Genitrini1 > Martin Pépin1 Alfredo Viola2

Work submitted to the LAGOS conference

December 10, 2020
1LIP6 — Sorbonne Université — Paris

2Universidad de la República — Montevideo



Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work



Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

2

6

1

3

4

5

7

8

9

10

11

1/17



Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

2

6

1

3

4

5

7

8

9

10

11

1/17



Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

1/17



Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

source

sink

1/17



State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]

> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Problems:
• Inclusion-exclusion
• No or little control
over the number of
edges

2/17



State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96]

•
> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Problems:
• Inclusion-exclusion
• No or little control
over the number of
edges

2/17



State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•
Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Problems:
• Inclusion-exclusion
• No or little control
over the number of
edges

2/17



State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Problems:
• Inclusion-exclusion
• No or little control
over the number of
edges

2/17



State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96] •
> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77] •

Problems:
• Inclusion-exclusion

• No or little control
over the number of
edges

2/17



State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96] •
> Uniform sampling: [MDB01], [KM15] •

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77] •

Problems:
• Inclusion-exclusion
• No or little control
over the number of
edges

2/17



Still missing

> Finer control over the number of edges?

> Sampling of unlabelled structures?

3/17



Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work



A new kind of DAG

Directed Ordered Acyclic Graphs (DOAGs)
DOAG = Unlabelled DAG

+ a total order on the outgoing edges of each vertex
+ only one sink and one source

6= 6= =

4/17



Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

> Models unlabelled objects.

5/17



Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

> Models unlabelled objects.

5/17



Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

> Models unlabelled objects.

5/17



Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

→

6/17



Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

1 2 3

→

6/17



Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

1 2 3

→

1 2

3
→

4

6/17



Recursive decomposition: multi-source DOAGs

q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

7/17



Recursive decomposition: multi-source DOAGs

q edges to sources;

s edges to internal vertices;(s + q
q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

7/17



Recursive decomposition: multi-source DOAGs

q edges to sources;
s edges to internal vertices;

(s + q
q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

7/17



Recursive decomposition: multi-source DOAGs

q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

7/17



Recursive decomposition: multi-source DOAGs

q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

7/17



Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.

8/17



Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.

8/17



Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.
8/17



Random sampling

Do the same, but backwards.

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(s+qs )(

n−k−q
s )s!

Dn,m,k
;

2. Sample a DOAGn−1,m−s−q,k−1+q recursively;
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/17



Random sampling

Do the same, but backwards.

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(s+qs )(

n−k−q
s )s!

Dn,m,k
;

2. Sample a DOAGn−1,m−s−q,k−1+q recursively;
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/17



Random sampling

Do the same, but backwards.

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(s+qs )(

n−k−q
s )s!

Dn,m,k
;

2. Sample a DOAGn−1,m−s−q,k−1+q recursively;

3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/17



Random sampling

Do the same, but backwards.

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(s+qs )(

n−k−q
s )s!

Dn,m,k
;

2. Sample a DOAGn−1,m−s−q,k−1+q recursively;
3. We already know the q largest sources;

4. Choose s internal vertices;
5. Connect them to the new sources.

9/17



Random sampling

Do the same, but backwards.

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(s+qs )(

n−k−q
s )s!

Dn,m,k
;

2. Sample a DOAGn−1,m−s−q,k−1+q recursively;
3. We already know the q largest sources;
4. Choose s internal vertices;

5. Connect them to the new sources.

9/17



Random sampling

Do the same, but backwards.

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(s+qs )(

n−k−q
s )s!

Dn,m,k
;

2. Sample a DOAGn−1,m−s−q,k−1+q recursively;
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/17



Random sampling

How to select s and q?

1. Pick an x ∼ UNIF(J0;Dn,m,k − 1K);
2. compute the partial sum of the terms Dn−1,m−s−q,k−1+q

(s+q
s
)(n−k−q

s
)
s!;

3. stop as soon as the sum becomes > x;
4. (bonus) sum in the lexicographic order for (s+ q, s).

10/17



Random sampling

How to select s and q?

1. Pick an x ∼ UNIF(J0;Dn,m,k − 1K);

2. compute the partial sum of the terms Dn−1,m−s−q,k−1+q
(s+q

s
)(n−k−q

s
)
s!;

3. stop as soon as the sum becomes > x;
4. (bonus) sum in the lexicographic order for (s+ q, s).

10/17



Random sampling

How to select s and q?

1. Pick an x ∼ UNIF(J0;Dn,m,k − 1K);
2. compute the partial sum of the terms Dn−1,m−s−q,k−1+q

(s+q
s
)(n−k−q

s
)
s!;

3. stop as soon as the sum becomes > x;
4. (bonus) sum in the lexicographic order for (s+ q, s).

10/17



Random sampling

How to select s and q?

1. Pick an x ∼ UNIF(J0;Dn,m,k − 1K);
2. compute the partial sum of the terms Dn−1,m−s−q,k−1+q

(s+q
s
)(n−k−q

s
)
s!;

3. stop as soon as the sum becomes > x;

4. (bonus) sum in the lexicographic order for (s+ q, s).

10/17



Random sampling

How to select s and q?

1. Pick an x ∼ UNIF(J0;Dn,m,k − 1K);
2. compute the partial sum of the terms Dn−1,m−s−q,k−1+q

(s+q
s
)(n−k−q

s
)
s!;

3. stop as soon as the sum becomes > x;
4. (bonus) sum in the lexicographic order for (s+ q, s).

10/17



Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity
Sampling a DOAG uniformly at random costs O(

∑
v d2v) arithmetic

operations where v ranges over the vertices of the output and dv is the
out-degree of v.

In practice it takes a few milliseconds.

11/17



Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity
Sampling a DOAG uniformly at random costs O(

∑
v d2v) arithmetic

operations where v ranges over the vertices of the output and dv is the
out-degree of v.

In practice it takes a few milliseconds.

11/17



Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity
Sampling a DOAG uniformly at random costs O(

∑
v d2v) arithmetic

operations where v ranges over the vertices of the output and dv is the
out-degree of v.

In practice it takes a few milliseconds.

11/17



Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

Dn,m,k =
∑
0<s+q

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

> Counting: O(N2d4) arithmetic operations.
> Sampling O(Nd2) arithmetic operations.
> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

Dn,m,k =
∑
0<s+q

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

> Counting: O(N2d4) arithmetic operations.
> Sampling O(Nd2) arithmetic operations.
> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

> Counting: O(N2d4) arithmetic operations.
> Sampling O(Nd2) arithmetic operations.
> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

> Counting: O(N2d4) arithmetic operations.

> Sampling O(Nd2) arithmetic operations.
> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

> Counting: O(N2d4) arithmetic operations.
> Sampling O(Nd2) arithmetic operations.

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/17



Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

> Counting: O(N2d4) arithmetic operations.
> Sampling O(Nd2) arithmetic operations.
> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/17



Your next favourite wallpaper

Uniform DOAG
with m = 1000 edges
and with out-degree
bounded by d = 10.

13/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

6

1

3

4

5

7

8

9

10

11

2 12

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

6

1

3

4

5

7

8

9

10

11

2 12

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

1

3

5

7

9

10

11

2 12

4

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

6

1

3

4

5

7

8

9

10

11

2 12

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

6

1

3

4

5

7

8

9

10

11

2 12

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

6

1

3

4

5

7

8

9

10

11

2 12

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

6

1

3

4

5

7

8

9

10

11

2 12

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!

14/17



Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

6

1

3

4

5

7

8

9

10

2

An,m,k = #DAGs (one sink, k sources)

k · An,m,k =

n ·
∑
s+q>0

An−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)

15/17



Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

6

1

3

5

7

8

9

10

2

4

An,m,k = #DAGs (one sink, k sources)

k · An,m,k =

n ·
∑
s+q>0

An−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)

15/17



Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.

6

1

3

5

7

8

9

10

2

4

An,m,k = #DAGs (one sink, k sources)
k · An,m,k =

n ·
∑
s+q>0

An−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)

15/17



Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work



Conclusion

Initial questions:

> Finer control over the number of edges?

✓

> Sampling of unlabelled structures?

➡ We made one step forward

We presented:

> a new model of DAGs: DOAGs;
> a new way of counting.

16/17



Conclusion

Initial questions:

> Finer control over the number of edges? ✓
> Sampling of unlabelled structures?

➡ We made one step forward

We presented:

> a new model of DAGs: DOAGs;
> a new way of counting.

16/17



Conclusion

Initial questions:

> Finer control over the number of edges? ✓
> Sampling of unlabelled structures? ➡ We made one step forward

We presented:

> a new model of DAGs: DOAGs;
> a new way of counting.

16/17



Conclusion

Initial questions:

> Finer control over the number of edges? ✓
> Sampling of unlabelled structures? ➡ We made one step forward

We presented:

> a new model of DAGs: DOAGs;
> a new way of counting.

16/17



Future work

> Can we get rid of the one-sink-one-source constraint while retaining
weak connectivity?

> Is there a symbolic method operator hidden behind the
vertex-by-vertex decomposition?

> Asymptotics?
> Can we get closer to sampling regular unlabelled DAGs?

17/17



Thank you for your attention!

17/17



References i

I. M. Gessel.
Counting acyclic digraphs by sources and sinks.
Discrete Mathematics, 160(1):253 – 258, 1996.
J. Kuipers and G. Moffa.
Uniform random generation of large acyclic digraphs.
Stat. and Computing, 25(2):227–242, 2015.

G. Melançon, I. Dutour, and M. Bousquet-Mélou.
Random generation of directed acyclic graphs.
Electron. Notes Discret. Math., 10:202–207, 2001.



References ii

R.W. Robinson.
Counting labeled acyclic digraphs.
New Directions in the Theory of Graphs, pages 239–273, 1973.

R. W. Robinson.
Counting unlabeled acyclic digraphs.
In Combinatorial Mathematics V, Lecture Notes in Mathematics, pages
28–43. Springer, 1977.


	Background
	Directed Ordered Acyclic Graphs
	Extensions
	Conclusion and future work
	Appendix

