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Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs
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State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]

> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Problems:
• Inclusion-exclusion
• No or little control
over the number of
edges
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Still missing

> Finer control over the number of edges?

> Sampling of unlabelled structures?
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A new kind of DAG

Directed Ordered Acyclic Graphs (DOAGs)
DOAG = Unlabelled DAG

+ a total order on the outgoing edges of each vertex
+ only one sink and one source

6= 6= =
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Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

> Models unlabelled objects.
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Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

→
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Recursive decomposition: multi-source DOAGs

q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!
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Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.
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Random sampling

Do the same, but backwards.

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(s+qs )(

n−k−q
s )s!

Dn,m,k
;

2. Sample a DOAGn−1,m−s−q,k−1+q recursively;
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.
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Random sampling

How to select s and q?

1. Pick an x ∼ UNIF(J0;Dn,m,k − 1K);
2. compute the partial sum of the terms Dn−1,m−s−q,k−1+q

(s+q
s
)(n−k−q

s
)
s!;

3. stop as soon as the sum becomes > x;
4. (bonus) sum in the lexicographic order for (s+ q, s).
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Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity
Sampling a DOAG uniformly at random costs O(

∑
v d2v) arithmetic

operations where v ranges over the vertices of the output and dv is the
out-degree of v.

In practice it takes a few milliseconds.
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Bounded degree sampling

What if we want DOAGs with maximum out-degree d?

Dn,m,k =
∑
0<s+q

Dn−1,m−s−q,k−1+q

(
s+ q
s

)(
n− k− q

s

)
s!

> Counting: O(N2d4) arithmetic operations.
> Sampling O(Nd2) arithmetic operations.
> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.
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Your next favourite wallpaper

Uniform DOAG
with m = 1000 edges
and with out-degree
bounded by d = 10.

13/17



Back to labelled DAGs

The classical way to count is by a layer-by-layer approach.

An,k = #DAGs with n vertices, k sources

An,k =
(
n
k

)∑
j>0

An−k,j · (2k − 1)j · 2k(n−k−j)

> How to count by number of edges?
> How to enforce connectivity (e.g. with
one sink and one source)?

→ Use our approach!
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Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.
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An,m,k = #DAGs (one sink, k sources)

k · An,m,k =

n ·
∑
s+q>0

An−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)
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Conclusion

Initial questions:

> Finer control over the number of edges?

✓

> Sampling of unlabelled structures?

➡ We made one step forward

We presented:

> a new model of DAGs: DOAGs;
> a new way of counting.
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Future work

> Can we get rid of the one-sink-one-source constraint while retaining
weak connectivity?

> Is there a symbolic method operator hidden behind the
vertex-by-vertex decomposition?

> Asymptotics?
> Can we get closer to sampling regular unlabelled DAGs?
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Thank you for your attention!
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