Constructive enumeration and uniform random sampling of DAGs

Antoine Genitrini¹ > Martin Pépin¹ Alfredo Viola² Work submitted to the LAGOS conference January 19, 2021

¹LIP6 — Sorbonne Université — Paris

²Universidad de la República — Montevideo

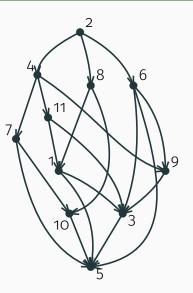
Background

Directed Ordered Acyclic Graphs

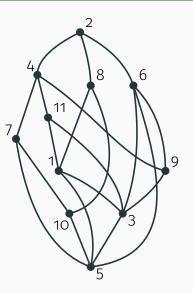
Extensions

Conclusion and future work

- > A finite set of vertices V e.g. $\{1, 2, \ldots, n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.



- > A finite set of vertices V e.g. $\{1, 2, \ldots, n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.



- > A finite set of vertices V e.g. $\{1, 2, \ldots, n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.
- > If considered up to relabelling: unlabelled DAGs

- > A finite set of vertices V e.g. $\{1, 2, \ldots, n\}$;
- > a set of directed edges $E \subseteq V \times V$;
- > no cycles: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n = v_1$.
- > If considered up to relabelling: unlabelled DAGs

Goals and motivations

> Counting

- > Starting point for many quantitative studies...
- > ... And for random generation

Goals and motivations

> Counting

- > Starting point for many quantitative studies...
- > ... And for random generation
- > Uniform random generation
 - > Testing and simulations
 - > Uniformity as a default generation strategy
 - > Can be biased as needed

> Counting by number of vertices: [Rob73]

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]
- > Uniform sampling: [MDB01], [KM15]

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96]
- > Uniform sampling: [MDB01], [KM15]

Unlabelled DAGs:

> Counting by vertices and sources: [Rob77]

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96] •
- > Uniform sampling: [MDB01], [KM15]

Unlabelled DAGs:

 Counting by vertices and sources: [Rob77] •

Problems:

Inclusion-exclusion

- > Counting by number of vertices: [Rob73]
- > Counting by number of edges: [Ges96] •
- > Uniform sampling: [MDB01], [KM15] •

Unlabelled DAGs:

 Counting by vertices and sources: [Rob77] •

Problems:

- Inclusion-exclusion
- No or little control over the number of edges

> Finer control over the number of edges?

> Sampling of unlabelled structures?

Background

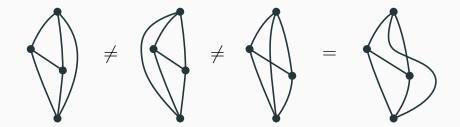
Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

Directed Ordered Acyclic Graphs (DOAGs)

- DOAG = Unlabelled DAG
 - + a total order on the outgoing edges of each vertex
 - + only one sink and one source



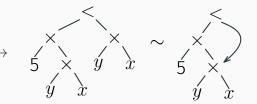
Real-life implementations of DAGs have an **ordering**;

```
struct vertex {
    int out_degree;
    struct vertex *out_edges;
};
```

 \rightarrow

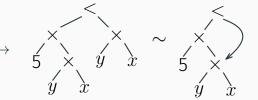
Real-life implementations of DAGs have an **ordering**; struct vertex {
 int out_degree;
 struct vertex *out_edges;
};

> The memory layout of trees with hash-consing have an **ordering**;

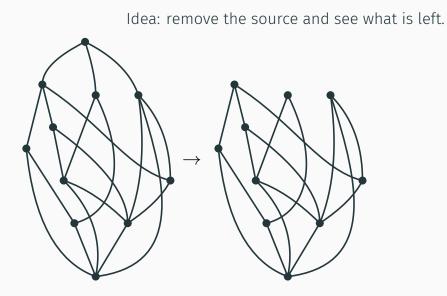


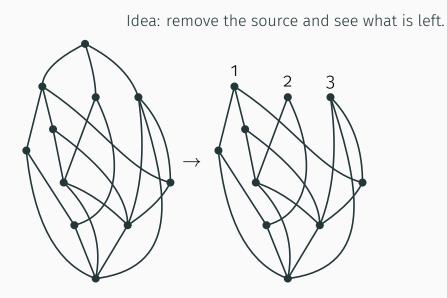
Real-life implementations of DAGs have an **ordering**; struct vertex {
 int out_degree;
 struct vertex *out_edges;
};

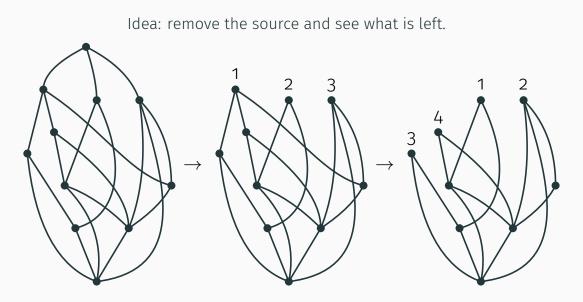
> The memory layout of trees with hash-consing have an **ordering**;



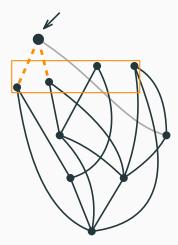
> Models **unlabelled** objects.





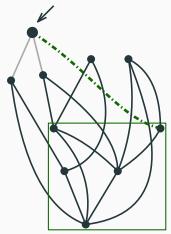


The smallest source + a sub-DOAG;



The smallest source + a sub-DOAG;

q edges to sources;



The smallest source + a sub-DOAG;

q edges to sources;

s edges to internal vertices;

- q edges to sources;
- s edges to internal vertices;

 $\binom{s+q}{s}$ s! ways to arrange the two sets of edges;

The smallest source + a sub-DOAG;

q edges to sources;

s edges to internal vertices;

 $\binom{s+q}{q}$ s! ways to arrange the two sets of edges;

 $D_{n,m,k} =$ #DOAGs with *n* vertices, *m* edges, *k* sources

$$=\sum_{s+q>0}D_{n-1,m-s-q,k-1+q}\binom{n-k-q}{s}\binom{s+q}{q}s!$$

Complexity of the counting

$$D_{1,m,k} = \mathbb{1}_{\{m=0 \land k=1\}}$$

$$D_{n,m,k} = 0$$
 when $k \le 0$

$$D_{n,m,k} = \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} \binom{n-k-q}{s} \binom{s+q}{q} s!$$
 when $n > 1$

Complexity of the counting

$$D_{1,m,k} = \mathbb{1}_{\{m=0 \land k=1\}}$$

$$D_{n,m,k} = 0$$
 when $k \le 0$

$$D_{n,m,k} = \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} \binom{n-k-q}{s} \binom{s+q}{q} s!$$
 when $n > 1$

Complexity

Computing $D_{n,m,k}$ for all $n, k \leq N$ and $m \leq M$ takes $O(N^4M)$ arithmetic operations.

Complexity of the counting

$$D_{1,m,k} = \mathbb{1}_{\{m=0 \land k=1\}}$$

$$D_{n,m,k} = 0$$
 when $k \le 0$

$$D_{n,m,k} = \sum_{s+q>0} D_{n-1,m-s-q,k-1+q} \binom{n-k-q}{s} \binom{s+q}{q} s!$$
 when $n > 1$

Complexity

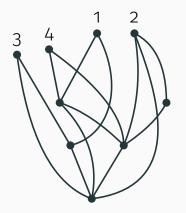
Computing $D_{n,m,k}$ for all $n, k \leq N$ and $m \leq M$ takes $O(N^4M)$ arithmetic operations.

In practice we reach M = 400, N = M + 1.

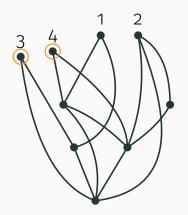
Do the same, but backwards.

.

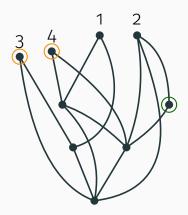
1. Select
$$(s, q)$$
 with
probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{n-k-q}{s}\binom{s+q}{q}s!}{D_{n,m,k}}$;



- 1. Select (s, q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{n-k-q}{s}\binom{s+q}{q}s!}{D_{n,m,k}}$; 2. Sample a DOAG_{n-1,m-s-q,k-1+q} recursively;



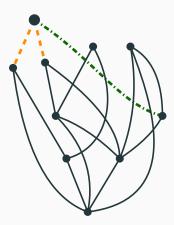
- 1. Select (s, q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{n-k-q}{s}\binom{s+q}{q}s!}{D_{n,m,k}}$;
- 2. Sample a DOAG_{n-1,m-s-q,k-1+q} recursively;
- 3. We already know the q largest sources;



- 1. Select (s, q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{n-k-q}{s}\binom{s+q}{q}s!}{D_{n,m,k}}$;
- 2. Sample a $DOAG_{n-1,m-s-q,k-1+q}$ recursively;
- 3. We already know the q largest sources;
- 4. Choose s internal vertices;

Random sampling

Do the same, but backwards.



- 1. Select (s, q) with probability $\frac{D_{n-1,m-s-q,k-1+q}\binom{n-k-q}{s}\binom{s+q}{q}s!}{D_{n,m,k}}$;
- 2. Sample a $DOAG_{n-1,m-s-q,k-1+q}$ recursively;
- 3. We already know the q largest sources;
- 4. Choose s internal vertices;
- 5. Connect them to the new sources.

1. Pick an
$$x \sim \text{UNIF}([[0; D_{n,m,k} - 1]]);$$

1. Pick an $x \sim \text{UNIF}([[0; D_{n,m,k} - 1]]);$

2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q}\binom{n-k-q}{s}\binom{s+q}{q}s!$;

- 1. Pick an $x \sim \text{UNIF}([[0; D_{n,m,k} 1]]);$
- 2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} \binom{n-k-q}{s} \binom{s+q}{q} s!$;
- 3. stop as soon as the sum becomes > x;

- 1. Pick an $x \sim \text{UNIF}([[0; D_{n,m,k} 1]]);$
- 2. compute the partial sum of the terms $D_{n-1,m-s-q,k-1+q} {\binom{n-k-q}{s}} {\binom{s+q}{q}} s!$;
- 3. stop as soon as the sum becomes > x;
- 4. (bonus) sum in the lexicographic order for (s + q, s).

Complexity of the sampling algorithm

- > Selecting s and q: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity of the sampling algorithm

- > Selecting s and q: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity

Sampling a DOAG uniformly at random costs $O(\sum_{v} d_{v}^{2})$ arithmetic operations where v ranges over the vertices of the output and d_{v} is the out-degree of v.

Complexity of the sampling algorithm

- > Selecting s and q: $O((s+q)^2)$ arithmetic operations;
- > the rest is cheap.

Complexity

Sampling a DOAG uniformly at random costs $O(\sum_{v} d_{v}^{2})$ arithmetic operations where v ranges over the vertices of the output and d_{v} is the out-degree of v.

In practice it takes a few milliseconds.

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

$$D_{n,m,k} = \sum_{0 < s+q} D_{n-1,m-s-q,k-1+q} \binom{n-k-q}{s} \binom{s+q}{q} s!$$

$$D_{n,m,k}^{(d)} = \sum_{0 < s+q \leq d} D_{n-1,m-s-q,k-1+q}^{(d)} \binom{n-k-q}{s} \binom{s+q}{q} s!$$

$$D_{n,m,k}^{(d)} = \sum_{0 < s+q \leq d} D_{n-1,m-s-q,k-1+q}^{(d)} \binom{n-k-q}{s} \binom{s+q}{q} s!$$

> Counting: $O(N^2d^4)$ arithmetic operations.

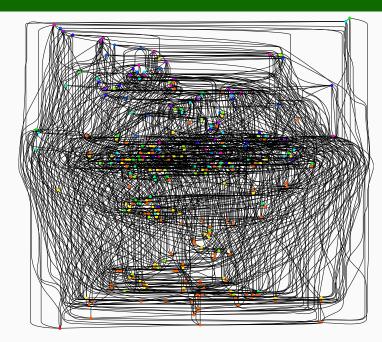
$$D_{n,m,k}^{(d)} = \sum_{0 < s+q \leq d} D_{n-1,m-s-q,k-1+q}^{(d)} \binom{n-k-q}{s} \binom{s+q}{q} s!$$

- > Counting: $O(N^2d^4)$ arithmetic operations.
- > Sampling *O*(*Nd*²) arithmetic operations.

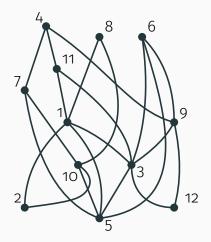
$$D_{n,m,k}^{(d)} = \sum_{0 < s+q \leq d} D_{n-1,m-s-q,k-1+q}^{(d)} \binom{n-k-q}{s} \binom{s+q}{q} s!$$

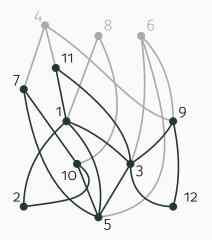
- > Counting: $O(N^2d^4)$ arithmetic operations.
- > Sampling O(Nd²) arithmetic operations.
- > In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

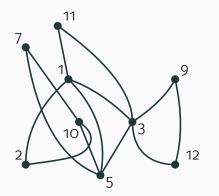
Your next favourite wallpaper



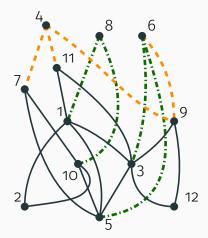
Uniform DOAG with m = 1000 edges and with out-degree bounded by d = 10.





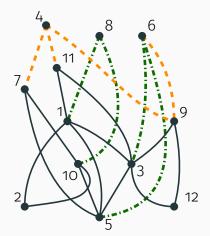


The classical way to count is by a *layer-by-layer* approach.



 $A_{n,k} = #$ DAGs with *n* vertices, *k* sources

The classical way to count is by a *layer-by-layer* approach.



 $A_{n,k} = \# \text{DAGs with } n \text{ vertices, } k \text{ sources}$ $A_{n,k} = \binom{n}{k} \sum_{j>0} A_{n-k,j} \cdot (2^k - 1)^j \cdot 2^{k(n-k-j)}$

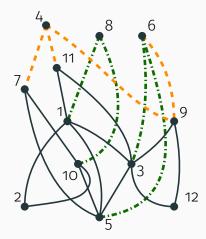
The classical way to count is by a *layer-by-layer* approach.



 $A_{n,k} = \# \text{DAGs with } n \text{ vertices, } k \text{ sources}$ $A_{n,k} = \binom{n}{k} \sum_{j>0} A_{n-k,j} \cdot (2^k - 1)^j \cdot 2^{k(n-k-j)}$

- > How to count by number of edges?
- > How to enforce connectivity (e.g. with one sink and one source)?

The classical way to count is by a *layer-by-layer* approach.



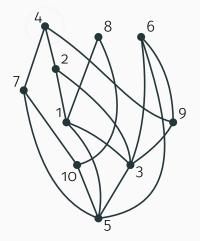
 $A_{n,k} = \# \text{DAGs with } n \text{ vertices, } k \text{ sources}$ $A_{n,k} = \binom{n}{k} \sum_{j>0} A_{n-k,j} \cdot (2^k - 1)^j \cdot 2^{k(n-k-j)}$

- > How to count by number of edges?
- > How to enforce connectivity (e.g. with one sink and one source)?

 \rightarrow Use our approach!

Vertex-by-vertex decomposition of labelled DAGs

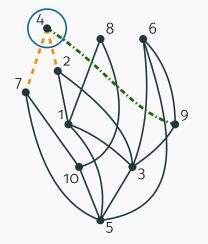
Idea: mark one source, and remove it.



 $A_{n,m,k} = #DAGs$ (one sink, k sources)

Vertex-by-vertex decomposition of labelled DAGs

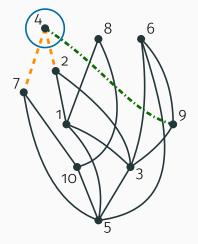
Idea: mark one source, and remove it.



 $A_{n,m,k} = \#$ DAGs (one sink, *k* sources) $k \cdot A_{n,m,k} =$

Vertex-by-vertex decomposition of labelled DAGs

Idea: mark one source, and remove it.



$$A_{n,m,k} = \# DAGs \text{ (one sink, } k \text{ sources)}$$

$$k \cdot A_{n,m,k} =$$

$$n \cdot \sum_{s+q>0} A_{n-1,m-s-q,k-1+q} \binom{k-1+q}{q} \binom{n-q-k}{s}$$

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion and future work

- > Finer control over the number of edges?
- > Sampling of unlabelled structures?

- > Finer control over the number of edges? \checkmark
- > Sampling of unlabelled structures?

- > Finer control over the number of edges? \checkmark
- > Sampling of unlabelled structures? → We made one step forward

- > Finer control over the number of edges? \checkmark
- > Sampling of unlabelled structures? → We made one step forward

We presented:

- > a new model of DAGs: DOAGs;
- > a new way of counting.

- > Can we get rid of the one-sink-one-source constraint while retaining weak connectivity?
- > Is there a symbolic method operator hidden behind the vertex-by-vertex decomposition?
- > Asymptotics?
- > Can we get closer to sampling regular unlabelled DAGs?

Thank you for your attention!

🔋 I. M. Gessel.

Counting acyclic digraphs by sources and sinks. *Discrete Mathematics*, 160(1):253 – 258, 1996.

- J. Kuipers and G. Moffa. Uniform random generation of large acyclic digraphs. Stat. and Computing, 25(2):227–242, 2015.
- G. Melançon, I. Dutour, and M. Bousquet-Mélou. **Random generation of directed acyclic graphs.** *Electron. Notes Discret. Math.*, 10:202–207, 2001.

📔 R.W. Robinson.

Counting labeled acyclic digraphs.

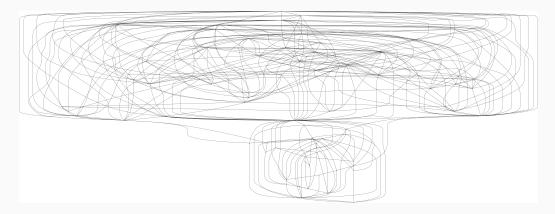
New Directions in the Theory of Graphs, pages 239–273, 1973.

📄 R. W. Robinson.

Counting unlabeled acyclic digraphs.

In *Combinatorial Mathematics V*, Lecture Notes in Mathematics, pages 28–43. Springer, 1977.

A biased DOAG



DOAG with 3 bottlenecks: every path from a source to a vertex must go through one of these 3 points.