Statistical Analysis of Non-Deterministic Fork-Join Processes

> Martin Pépin Antoine Genitrini Frédéric Peschanski December 3, 2020

Sorbonne Université — LIP6 — Paris

One computation unit shared by several processes:

- > Possible dependencies between processes
- > Scheduling

One computation unit shared by several processes:

- > Possible dependencies between processes
- > Scheduling

How to ensure that a program is correct regardless of the scheduling?

One computation unit shared by several processes:

- > Possible dependencies between processes
- > Scheduling

How to ensure that a program is correct regardless of the **scheduling**?

> Many possible schedulings: combinatorial explosion.

One computation unit shared by several processes:

- > Possible dependencies between processes
- > Scheduling

How to ensure that a program is correct regardless of the **scheduling**?

- > Many possible schedulings: combinatorial explosion.
- > Can we (efficiently) count them?
- > Can we (efficiently) sample uniformly among them?

A negative result

[Brightwell & Winkler '91]

Counting the linear extensions of a partial order is a #-P complete problem.

I.e. it is as hard as counting the number of solutions in SAT.

So we cannot count efficiently...

A negative result

[Brightwell & Winkler '91]

Counting the linear extensions of a partial order is a #-P complete problem.

I.e. it is as hard as counting the number of solutions in SAT.

So we cannot count efficiently... in the **general** case.

But we can have some restrictions on the programs.

The long-term project

"Quantitative and algorithmic aspects of concurrency"

- > Olivier Bodini, Matthieu Dien, Antoine Genitrini, Martin Pépin, Frédéric Peschanski, ...
- > Identify **fundamental** components of concurrency and **interpret** them as combinatorial objects
- > Algorithmic solutions for the **counting** and **sampling** problems
- > Analytical results (when possible)

Outline

A simple class of concurrent programs

Algorithmic aspects

Conclusion and perspective

Fork-Join parallelism

Parallel composition

Execution = any interleaving of an execution of *P* and an execution of *Q*.

Sequential composition

Execution = an execution of P followed by an execution of Q.

Non-determinism and loops

Non-deterministic choice

Execution = an execution of P or an execution of Q.

Execution = sequence of executions of Q

Non-deterministic Fork-Join programs (NFJ)

```
P,Q ::= P \parallel Q (parallel composition)

\mid P;Q (sequential composition)

\mid P+Q (non-deterministic choice)

\mid P^* (loop)

\mid a (atomic action)

\mid 0 (empty program)
```

Non-deterministic Fork-Join programs (NFJ)

```
P,Q ::= P \parallel Q (parallel composition)

\mid P;Q (sequential composition)

\mid P+Q (non-deterministic choice)

\mid P^* (loop)

\mid a (atomic action)

\mid 0 (empty program)
```

> All atomic actions accross a program are **distinct**.

Define the executions of P as a combinatorial class [P]:

$$[\![0]\!] = \mathcal{E}$$
$$[\![a]\!] = \mathcal{Z}$$

$$[a] = 2$$

Define the executions of P as a combinatorial class $[\![P]\!]$:

$$[\![0]\!] = \mathcal{E}$$
$$[\![a]\!] = \mathcal{Z}$$
$$[\![P;Q]\!] = [\![P]\!] \times [\![Q]\!]$$
$$[\![P \parallel Q]\!] = [\![P]\!] \star [\![Q]\!]$$

Define the executions of P as a combinatorial class $[\![P]\!]$:

$$[0] = \mathcal{E}$$

$$[a] = \mathcal{Z}$$

$$[P; Q] = [P] \times [Q]$$

$$[P \parallel Q] = [P] \star [Q]$$

$$[P + Q]_{\neq 0} = [P]_{\neq 0} + [Q]_{\neq 0}$$

$$[P^*] = SEQ([P]_{\neq 0})$$

Define the executions of P as a combinatorial class [P]:

$$[0] = \mathcal{E}$$

$$[a] = \mathcal{Z}$$

$$[P; Q] = [P] \times [Q]$$

$$[P \parallel Q] = [P] \star [Q]$$

$$[P + Q]_{\neq 0} = [P]_{\neq 0} + [Q]_{\neq 0}$$

$$[P^*] = SEQ([P]_{\neq 0})$$

"If you can specify it, you can analyse it"

Outline

A simple class of concurrent program:

Algorithmic aspects

Conclusion and perspective

Counting executions

Algorithm:
$$P \xrightarrow{\text{prev. slide}} \llbracket P \rrbracket \xrightarrow{\text{symbolic method}} GF \xrightarrow{\llbracket z^n \rrbracket} \text{count}$$

Counting executions

$$\textbf{Algorithm} \colon P \overset{\text{prev. slide}}{\longrightarrow} \llbracket P \rrbracket \overset{\text{symbolic method}}{\longrightarrow} GF \overset{[z^n]}{\longrightarrow} \text{count}$$

Theorem

The counting algorithm performs O(|P|M(n)) arithmetic operations on big integers.

The coefficients of the polynomial have $O(n \ln n)$ bits.

- > |P| is the syntactic size of P.
- > M(n) is the cost of the multiplication of two polynomials of degree n.

Counting executions

$$\textbf{Algorithm} \colon P \overset{\text{prev. slide}}{\longrightarrow} \llbracket P \rrbracket \overset{\text{symbolic method}}{\longrightarrow} GF \overset{[z^n]}{\longrightarrow} \text{count}$$

Theorem

The counting algorithm performs O(|P|M(n)) arithmetic operations on big integers.

The coefficients of the polynomial have $O(n \ln n)$ bits.

- > |P| is the syntactic size of P.
- > M(n) is the cost of the multiplication of two polynomials of degree n.

$$\implies O(|P|M(n)M(n \ln n))$$
 bit-complexity.

 $\textbf{Algorithm:} \ P \stackrel{\text{prev. slides}}{\longrightarrow} \ \llbracket P \rrbracket \stackrel{\text{recursive method}}{\longrightarrow} \ \text{uniform execution}$

Rule:

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

$$= SAMPLE((a + b)^* \parallel (c + (d; e) + (f; g)), 3)$$

SAMPLE
$$((a + b)^* \parallel (c + (d; e) + (f; g)), 3)$$

$$P_n = Q_0 R_n \binom{n}{0} + Q_1 R_{n-1} \binom{n}{1} + Q_2 R_{n-2} \binom{n}{2} + \dots + Q_n R_0 \binom{n}{n}$$

Pick $k \in [0; n]$ with probability $Q_k R_{n-k} \binom{n}{k} / P_n$

$$1 \cdot 0 \cdot \binom{3}{0} + 2 \cdot 2 \cdot \binom{3}{1} + 4 \cdot 1 \cdot \binom{3}{2} + 8 \cdot 0 \cdot \binom{3}{3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

SHUFFLE(SAMPLE($(a+b)^*, 1$), SAMPLE($(c+(d;e)+(f;g)), 2$))

$$1 \cdot 0 \cdot \binom{3}{0} + 2 \cdot 2 \cdot \binom{3}{1} + 4 \cdot 1 \cdot \binom{3}{2} + 8 \cdot 0 \cdot \binom{3}{3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$

Rule:

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

$$= SHUFFLE(SAMPLE((a+b)^*,1),...)$$

$$P^* \to 0 + P; P^*$$

 $1 \cdot 0 \cdot {3 \choose 2} + 2 \cdot 2 \cdot {3 \choose 4} + 4 \cdot 1 \cdot {3 \choose 2} + 8 \cdot 0 \cdot {3 \choose 2} = 24 \cdot (0 + 1/2 + 1/2 + 0)$

Rule:

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

$$= \underbrace{\text{SHUFFLE}(\text{SAMPLE}(0 + (a+b); (a+b)^*, 1), \ldots)}$$

$$P^* \to 0 + P; P^*$$

 $1 \cdot 0 \cdot {3 \choose 2} + 2 \cdot 2 \cdot {3 \choose 4} + 4 \cdot 1 \cdot {3 \choose 2} + 8 \cdot 0 \cdot {3 \choose 2} = 24 \cdot (0 + 1/2 + 1/2 + 0)$

Rule:

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

SHUFFLE(SAMPLE($(a+b)$; $(a+b)^*$, 1), . . .)

$$1 \cdot 0 \cdot \binom{3}{0} + 2 \cdot 2 \cdot \binom{3}{1} + 4 \cdot 1 \cdot \binom{3}{2} + 8 \cdot 0 \cdot \binom{3}{3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$

SHUFFLE(SAMPLE(
$$(a+b)$$
; $(a+b)^*$, 1), ...)

$$P_n = Q_0 R_n + Q_1 R_{n-1} + Q_2 R_{n-2} + \dots + Q_n R_0$$

Pick $k \in [0; n]$ with probability $Q_k R_{n-k} / P_n$

$$1 \cdot 0 \cdot {3 \choose 0} + 2 \cdot 2 \cdot {3 \choose 1} + 4 \cdot 1 \cdot {3 \choose 2} + 8 \cdot 0 \cdot {3 \choose 3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$

$$0 \cdot 1 + 2 \cdot 1 = 2 \cdot (0 + 1)$$

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

$$\underline{\qquad \qquad \qquad }$$

$$\text{SHUFFLE}(\text{SAMPLE}(a+b,1),\ldots)$$

$$\begin{aligned} 1 \cdot 0 \cdot \binom{3}{0} + 2 \cdot 2 \cdot \binom{3}{1} + 4 \cdot 1 \cdot \binom{3}{2} + 8 \cdot 0 \cdot \binom{3}{3} &= 24 \cdot (0 + 1/2 + 1/2 + 0) \\ 0 \cdot 1 + 2 \cdot 1 &= 2 \cdot (0 + 1) \end{aligned}$$

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

SHUFFLE(SAMPLE(
$$a + b, 1$$
),...)

Rule:
$$P_n = Q_n + R_n$$

Choose Q with probability Q_n/P_n

$$1 \cdot 0 \cdot {3 \choose 0} + 2 \cdot 2 \cdot {3 \choose 1} + 4 \cdot 1 \cdot {3 \choose 2} + 8 \cdot 0 \cdot {3 \choose 3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$
$$0 \cdot 1 + 2 \cdot 1 = 2 \cdot (0 + 1)$$

$$1+1=2\cdot (1/2+1/2)$$

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

$$= SHUFFLE(a, ...)$$

$$\begin{aligned} 1 \cdot 0 \cdot \binom{3}{0} + 2 \cdot 2 \cdot \binom{3}{1} + 4 \cdot 1 \cdot \binom{3}{2} + 8 \cdot 0 \cdot \binom{3}{3} &= 24 \cdot (0 + 1/2 + 1/2 + 0) \\ 0 \cdot 1 + 2 \cdot 1 &= 2 \cdot (0 + 1) \\ 1 + 1 &= 2 \cdot (1/2 + 1/2) \end{aligned}$$

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

SHUFFLE(
$$a$$
, SAMPLE($(c + (d; e) + (f; g)), 2))$

Rule:

$$1 \cdot 0 \cdot {3 \choose 0} + 2 \cdot 2 \cdot {3 \choose 1} + 4 \cdot 1 \cdot {3 \choose 2} + 8 \cdot 0 \cdot {3 \choose 3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$

$$0 \cdot 1 + 2 \cdot 1 = 2 \cdot (0 + 1)$$

$$1 + 1 = 2 \cdot (1/2 + 1/2)$$

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

SHUFFLE(a, de)

$$1 \cdot 0 \cdot {3 \choose 0} + 2 \cdot 2 \cdot {3 \choose 1} + 4 \cdot 1 \cdot {3 \choose 2} + 8 \cdot 0 \cdot {3 \choose 3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$

$$0 \cdot 1 + 2 \cdot 1 = 2 \cdot (0 + 1)$$

$$1 + 1 = 2 \cdot (1/2 + 1/2)$$

Algorithm:
$$P \xrightarrow{\text{prev. slides}} \llbracket P \rrbracket \xrightarrow{\text{recursive method}} \text{uniform execution}$$

$$dae$$

$$1 \cdot 0 \cdot {3 \choose 0} + 2 \cdot 2 \cdot {3 \choose 1} + 4 \cdot 1 \cdot {3 \choose 2} + 8 \cdot 0 \cdot {3 \choose 3} = 24 \cdot (0 + 1/2 + 1/2 + 0)$$

$$0 \cdot 1 + 2 \cdot 1 = 2 \cdot (0 + 1)$$

$$1 + 1 = 2 \cdot (1/2 + 1/2)$$

Random sampling — complexity

Theorem

Random sampling of executions has complexity $O(n \cdot \min(h(P), \ln n))$ where h denotes the "height" of P i.e. its maximum number of nested constructors.

The $O(n \ln n)$ bound is an consequence of [FZC'93,Molinero'05].

The algorithms in numbers

Counting

Sampling

P	n	# exec°≤ n	runtime	<i>P</i>	n	# exec°= n	UnifExec	IQR
500	500	1.058 · 2 ¹⁹²⁷	0.076s	500	500	1.969 · 2 ¹⁹²⁶	0.218ms	5μs
500	1000	$1.081 \cdot 2^{3832}$	0.462s	500	1000	$1.004 \cdot 2^{3832}$	0.563ms	21µs
500	3000	$1.341 \cdot 2^{11423}$	6.428s	500	3000	$1.245 \cdot 2^{11423}$	3.718ms	203µs
1000	500	$1.473 \cdot 2^{2330}$	0.159s	1000	500	$1.420 \cdot 2^{2330}$	0.301ms	10µs
1000	1000	$1.044 \cdot 2^{4712}$	0.874s	1000	1000	$1.005 \cdot 2^{4712}$	0.777ms	28µs
1000	3000	$1.092 \cdot 2^{14181}$	13.488s	1000	3000	$1.051 \cdot 2^{14181}$	4.829ms	481µs
2000	500	$1.768 \cdot 2^{2380}$	0.330s	2000	500	$1.704 \cdot 2^{2380}$	0.308ms	14µs
2000	1000	$1.215 \cdot 2^{4746}$	1.870s	2000	1000	1.169 · 2 ⁴⁷⁴⁶	1.021ms	51µs
2000	3000	$1.699 \cdot 2^{14120}$	25.376s	2000	3000	$1.634 \cdot 2^{14120}$	7.291ms	1.2ms
5000	500	$1.607 \cdot 2^{2923}$	0.897s	5000	500	$1.589 \cdot 2^{2923}$	0.309ms	7µs
5000	1000	$1.469 \cdot 2^{6016}$	5.434s	5000	1000	$1.448 \cdot 2^{6016}$	0.898ms	43µs
5000	3000	1.226 · 2 ¹⁸¹¹⁶	75.649s	5000	3000	1.208 · 2 ¹⁸¹¹⁶	18.526ms	1.5ms

Outline

A simple class of concurrent programs

Algorithmic aspects

Conclusion and perspective

Conclusion

Take away:

> Applying methods from analytic combinatorics to concurrent problem can be effective

Conclusion

Take away:

> Applying methods from analytic combinatorics to concurrent problem can be effective

Implementation

> https://gitlab.com/ParComb/libnfj

Future work:

- > Statistical model-checking
- > Generalize the model

Thank you for your attention!

Execution prefixes

Program P	Prefix program pref(<i>P</i>)	Specification of the prefixes $\langle P \rangle$
0	0	${\cal E}$
а	0 + a	$\mathcal{E}+\mathcal{Z}$
$P \parallel Q$	$(pref(P) \parallel pref(Q))$	$\langle P \rangle \star \langle Q \rangle$
P; Q	pref(P) + (P; pref(Q))	$\langle P \rangle + S(P) \times (\langle Q \rangle \setminus \mathcal{E})$
P + Q	pref(P) + pref(Q)	$\langle P \rangle + (\langle Q \rangle \setminus \mathcal{E})$
P*	P*; pref(P)	$\mathcal{E} + S(P^*) \times (\langle P \rangle \setminus \mathcal{E})$

Prefix covering

Table 1: Expected number of prefixes to be sampled to discover 20% of the prefixes of a random program of size 25 with either the isotropic or the uniform method.

Prefix length	1	2	3	4	5
# prefixes	11	18	30	60	128
Isotropic	2.1	4.45	11.17	35.09	1.28 · 10 ¹⁴
Uniform	2.1	3.18	6.57	13.26	27.69
Gain	0%	40%	70%	165%	4.61 · 10 ¹⁴ %