Statistical Analysis of Non-Deterministic Fork-Join
Processes

> Martin Pépin Antoine Genitrini Fréderic Peschanski
December 3, 2020

Sorbonne Université — LIP6 — Paris

Concurrency

One computation unit shared by several processes:

> Possible dependencies between processes
> Scheduling

1/12

Concurrency

One computation unit shared by several processes:

> Possible dependencies between processes
> Scheduling

How to ensure that a program is correct regardless of the scheduling?

1/12

Concurrency

One computation unit shared by several processes:

> Possible dependencies between processes
> Scheduling

How to ensure that a program is correct regardless of the scheduling?

> Many possible schedulings: combinatorial explosion.

1/12

Concurrency

One computation unit shared by several processes:

> Possible dependencies between processes
> Scheduling

How to ensure that a program is correct regardless of the scheduling?

> Many possible schedulings: combinatorial explosion.
> Can we (efficiently) count them?
> Can we (efficiently) sample uniformly among them?

1/12

A negative result

[Brightwell & Winkler '91]
Counting the linear extensions of a partial order is a #-P complete
problem.

l.e. it is as hard as counting the number of solutions in SAT.

So we cannot count efficiently...

2/12

A negative result

[Brightwell & Winkler '91]
Counting the linear extensions of a partial order is a #-P complete
problem.

l.e. it is as hard as counting the number of solutions in SAT.

So we cannot count efficiently... in the general case.
But we can have some restrictions on the programs.

2/12

The long-term project

“Quantitative and algorithmic aspects of concurrency”

> Qlivier Bodini, Matthieu Dien, Antoine Genitrini, Martin Pépin, Frédeéric
Peschanski, ...

> |dentify fundamental components of concurrency and interpret them
as combinatorial objects

> Algorithmic solutions for the counting and sampling problems
> Analytical results (when possible)

3/12

A simple class of concurrent programs

Fork-Join parallelism

Parallel composition Sequential composition
p Q P Q
—|task1|task 2|task3|—> || —|task1|task2|task3|—>; —|task1|task2|—>
\J d
—{task 1] task 1]task 2| task 3 task 2} —{task 1]task 2| task 3] task 1]task 2}
Execution = any interleaving of an Execution = an execution of P
execution of P and an execution followed by an execution of Q.
of Q.

412

Non-determinism and loops

Non-deterministic choice

p Q
—{task 1]task 2]task 3} 1
4
—{task 1]task 2| task 3}

or

Execution = an execution of P or
an execution of Q.

Loop
*
()

!
or

or
—{task 1[task 2| task 1]task 2}

Execution = sequence of
executions of Q

5/12

Non-deterministic Fork-Join programs (NFJ)

Pl Q
P.Q
P+Q
’D*

parallel composition)

sequential composition)
non-deterministic choice)
oop)

atomic action)

(
(
(n
(1
(
(empty program)

6/12

Non-deterministic Fork-Join programs (NFJ)

P,Q == PJ| Q (parallel composition)
| P;Q (sequential composition)
| P+Q (non-deterministic choice)
| P* (loop)
| a (atomic action)
| 0 (empty program)

> All atomic actions accross a program are distinct.

6/12

Combinatorial interpretation

Define the executions of P as a combinatorial class [P]:

[o]=¢
[a] = 2

7112

Combinatorial interpretation

Define the executions of P as a combinatorial class [P]:

[o] =€

[a] =2
[P:Q] = [PI < [q]
[Pl Q] =[Pl +[al

7112

Combinatorial interpretation

Define the executions of P as a combinatorial class [P]:

[o]=¢
[a]l =2
[P: Q] = [P] x [Q]
[P Il Q] = [P]*[Q]
[P+ QJ0 = [Plo + [Ql 20
[P*] = Sea ([P]+z0)

7112

Combinatorial interpretation

Define the executions of P as a combinatorial class [P]:

[0] =€
B Analytic
la] =2 Combinatorics
[P;a] = [P x [A] -
[P || @ = [Pl + [a]

[P+ QJl0 = [P0 + [Qll20
[P*] = SEQ([P]x0)

“If you can specify it, you can
analyse it”

7112

Algorithmic aspects

Counting executions

symbolic method [2"]
—

Algorithm: P prev. sjde [P] GF — count

8/12

Counting executions

symbolic method [2"]
—

Algorithm: P prev. side [P] GF — count

Theorem

The counting algorithm performs O(|P|M(n)) arithmetic operations on big
integers.

The coefficients of the polynomial have O(nInn) bits.

> |P| is the syntactic size of P.
> M(n) is the cost of the multiplication of two polynomials of degree n.

8/12

Counting executions

symbolic method 2"
—

Algorithm: P ""“% [p] GF <5 count

Theorem

The counting algorithm performs O(|P|M(n)) arithmetic operations on big
integers.

The coefficients of the polynomial have O(nInn) bits.

> |P| is the syntactic size of P.
> M(n) is the cost of the multiplication of two polynomials of degree n.

= O(|PIM(n)M(nInn)) bit-complexity.

8/12

Random sampling — the recursive method

recursive method

[FZC'93]

Algorithm: P prev. slides [P] uniform execution

9/12

Random sampling — the recursive method

recursive method

[FZC'93]

Algorithm: P prev. slides [P] uniform execution

SAMPLE((a + b)* || (c + (d;e) + (f;9)),3)

Rule:

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SAMPLE((a + b)* || (c + (d;e) + (f; 9)),3)

Pn = QoRn (8) + QiRq— (Q’) + Q2Rn— (2) + -+ QnRo (2)

Rule: Pick k € [[O; n]] with probability QleRn—I?(Z)/P”

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(SAMPLE((a + b)*, 1), SAMPLE((c + (d; e) + (f;), 2))

Rule:

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(SAMPLE((a + b)*, 1), ...)

P* = 0+P;P*
Rule: i

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(SAMPLE(O0 + (a + b); (a+ b)*,1),...)

P* = 0+P;P*
Rule: i

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(SAMPLE((a + b); (a + b)*,1),.. ")

Rule:

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)

9/12

Random sampling — the recursive method

recursive method

[FZC'93]

Algorithm: P prev. slides [P] uniform execution

SHUFFLE(SAMPLE((a + b); (a + b)*,1),...)

Pn - QORn + Q1Rnf1 + Qan,z P o0 IF QnRO

Rule: Pick k € [0; n] with probability QxR,_r/Pn

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)
0-14+2-1=2-(0+1)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(SAMPLE(a + b, 1),...)

Rule:

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)
0:-142-1=2-(0+1)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(SAMPLE(a + b, 1),...)

Pn:Qn+Rn

Rule: Choose Q with probability Q,/Pp,

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)
0:-142-1=2-(0+1)
1+1=2-(1/24+1/2)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(a, . ..)

Rule:

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)
0:-142-1=2-(0+1)
T+1=2-(1/2+1/2)

9/12

Random sampling — the recursive method

recursive method
—

[FZC'93]

Algorithm: P prev. slides [P] uniform execution

SHUFFLE(a, SAMPLE((c + (d; e) + (f; 9)),2))

Rule:

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)
0:-142-1=2-(0+1)
T+1=2-(1/2+1/2)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

SHUFFLE(a, de)

Rule:

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)
0:-142-1=2-(0+1)
T+1=2-(1/2+1/2)

9/12

Random sampling — the recursive method

. rev. slides i thod - :
Algorithm: P "= [P rec”?ﬂ”? % uniform execution
FzC'93

dae

Rule:

1-0-(0)+2-2-()+4-1- () +8-0-(3) =24-(0+1/2+1/2+0)
0:-142-1=2-(0+1)
T+1=2-(1/2+1/2)

9/12

Random sampling — complexity

Theorem

Random sampling of executions has complexity O(n - min(h(P), Inn))

where h denotes the “height” of P i.e. its maximum number of nested
constructors.

The O(nlnn) bound is an consequence of [FZC'93,Molinero’05].

10/12

The algorithms in numbers

Counting Sampling
|P| n #exec°<n runtime |P| n # exec®=n UNIFEXEC IQR
500 500 1.058 . 21977 0.076s 500 500 1.969 . 21926 0.218ms 5us
500 1000 1.081.238%2 0.462s 500 1000 1.004 . 23832 0.563ms 21ps
500 3000 1.341.21M23 6.428s 500 3000 1.245.2M423 3.718ms 203ps
1000 500 1.473.2%2330 0.159s 1000 500 1.420.22330 0.301ms 10us
1000 1000 1.044 - 24712 0.874s 1000 1000 1.005 - 24712 0.777ms 28ps
1000 3000 1.092-2™181 13488s 1000 3000 1.051.214181 4.829ms 481ps
2000 500 1.768.2%3%0 0.330s 2000 500 1.704.2%380 0.308ms 14ys
2000 1000 1.215.24746 1.870s 2000 1000 1.169 - 24746 1.021ms 51ps
2000 3000 1.699-2'120 25376s 2000 3000 1.634-2'4120 7291ms 1.2ms
5000 500 1.607 . 22923 0.897s 5000 500 1.589 . 2293 0.309ms 7us
5000 1000 1.469 . 26016 5.434s 5000 1000 1.448 - 26016 0.898ms 43ps
5000 3000 1.226-2'8"M6 756495 5000 3000 1.208-2'8"6 18526ms 1.5ms

/12

Conclusion and perspective

Conclusion

Take away:

> Applying methods from analytic combinatorics to concurrent problem
can be effective

12/12

https://gitlab.com/ParComb/libnfj

Conclusion

Take away:

> Applying methods from analytic combinatorics to concurrent problem
can be effective

Implementation
> https://gitlab.com/ParComb/1libnfj
Future work:

> Statistical model-checking
> Generalize the model

12/12

https://gitlab.com/ParComb/libnfj

Thank you for your attention!

Execution prefixes

Program Prefix program Specification of the prefixes
P pref(P) (P)

0 0 &

a 0+a E+Z

PIlQ (pref(P) || pref(Q)) (P)(Q)

P;Q pref(P) + (P; pref(Q)) (P) +5(P) x ((Q) \ €)

(
P+Q pref(P)+ pref(Q) (P)+((Q)\ &)
P P*; pref(P) E+5(P) x ((PY\ €)

Prefix covering

Table 1: Expected number of prefixes to be sampled to discover 20% of the
prefixes of a random program of size 25 with either the isotropic or the uniform

method.
Prefix length 1 2 3 4 5
prefixes 11 18 30 60 128
Isotropic 21 445 1117 3509 1.28-10™
Uniform 21 318 6.57 13.26 27.69

Gain 0% 40% 70% 165% 4.61-10"%

	Introduction
	A simple class of concurrent programs
	Algorithmic aspects
	Conclusion and perspective
	Appendix

