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State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
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State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96] e Problems:

> Uniform sampling: [MDBO1], [KM15] e e Inclusion-exclusion

Unlabelled DAGs: e No or little control

> Counting by vertices and over the number of
sources: [Rob77] e edges

Asymptotics
> Cf. Sergey's talk
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Still missing

> Finer control over the number of edges?

> Sampling of unlabelled structures?
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Directed Ordered Acyclic Graphs



A new kind of DAG

Directed Ordered Acyclic Graphs (DOAGS)

DOAG = Unlabelled DAG
+ a total order on the outgoing edges of each vertex
+only one sink and one source
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. . . struct vertex {
N Real-life implementations of . int S dacracs

DAGs have an ordering; , struct vertex rout_edges;

5/15



N Real-life implementations of
DAGs have an ordering;

N The memory layout of trees with
hash-consing have an ordering;

struct vertex {
int out_degree;
struct vertex =out_edges;
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Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

6/15



Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

6/15



Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

! 2 3 1 2
4
3
— —

6/15



Recursive decomposition: multi-source DOAGs
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Recursive decomposition: multi-source DOAGs

The smallest source + a sub-DOAG;
edges to :
s edges to internal vertices;

S =F
( )s! ways to arrange the two sets of edges;

Dn.mr = #DOAGs with n vertices, m edges, k sources

n—~hk— S+
_ Z Dn_1,m_s—q,fe—1+Q( s q)( qq)S!

s+q>0
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Complexity of the counting

Dimk = Lim=onk=1}
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Dimk = Lim=onr=1}

Dnmpr=0 when kR <0
n—~Rk-— S+
Domp= 3 Dn_m_s_q’k_w( ‘ q) ( q Q)S[ when n > 1
s+q>0
Complexity
Computing D m for all n,k < N .and m < M takes O(N“M) arithmetic
operations.

In practice we reach M = 400, N = M + 1.
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Random sampling = oUITUUOD

Do the same, but backwards!

. Select (s, g) with

n—k— s+
nfhmfsqu?fHa( s q)( qq)SI.

Dn,m,k !

. Sample a DOAG(n —1,m —s—q,kR—1+q);

probability 2

. We already know the g largest sources;
. Choose s internal vertices;
. Connect them to the new sources.
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Complexity of the sampling algorithm

> Selecting s and g: O((s + q)*) arithmetic operations;
> the rest is cheap.
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Complexity of the sampling algorithm

> Selecting s and g: O((s + q)°) arithmetic operations;
> the rest is cheap.

Complexity

# arithmetic operations = O ( > dﬁ)

v vertex

where d, = out-degree of v.

In practice: a few milliseconds.
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Extensions



What about labelled DAGs?

Idea: mark one source, and remove it.

Vp.mk = #DAGs (one sink, k sources)
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What about labelled DAGs?

Idea: mark one source, and remove it.

Vp.mk = #DAGs (one sink, k sources)
k- Vn,m,fe -

R—1+ n—qg-—R~R
n- Z Vn—1,m—s—q,k—1+q( q q>< Z )

s+q>0
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Bounded degree sampling
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What if we want DOAGs with out-degree < d?

n—kR—qg\/s+q
Dn,m,k: Z Dn—1,m—s—q,k—1+q< S )( q >S!

0<5+q
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Bounded degree sampling

What if we want DOAGs with out-degree < d?

d (d) n—~k-— q S+q
Dn,m,k - Z Dn1,msq,k1+q( S ) ( q s!

0<s+g<d

> Counting: O(N?d*)
> Sampling: O(Nd?)
> |n practice we reached m = 1500 with d =2 and m = 1000 with d = 10.
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Your next favourite wallpaper
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> New model + new way of counting
> Control over the number of edges? v/
> Unlabelled DAGs sampling? =» one step forward

>https://github.com/Kerl13/randdag
>martin.pepina@lip6.fr
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