
Constructive enumeration and uniform random
sampling of DAGs

Antoine Genitrini1 > Martin Pépin1 Alfredo Viola2

Work accepted for publication in the proceedings of LAGOS 2021

March 15, 2021
1LIP6 — Sorbonne Université — Paris

2Universidad de la República — Montevideo

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion

Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

2

6

1

3

4

5

7

8

9

10

11

1/15

Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

2

6

1

3

4

5

7

8

9

10

11

1/15

Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

1/15

Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs

source

sink

1/15

State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]

> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion
• No or little control

over the number of
edges

2/15

State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96]

•
> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion
• No or little control

over the number of
edges

2/15

State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•
Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion
• No or little control

over the number of
edges

2/15

State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•
Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion
• No or little control

over the number of
edges

2/15

State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion
• No or little control

over the number of
edges

2/15

State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96] •
> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77] •

Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion

• No or little control
over the number of
edges

2/15

State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]
> Counting by number of edges: [Ges96] •
> Uniform sampling: [MDB01], [KM15] •

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77] •

Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion
• No or little control

over the number of
edges

2/15

Still missing

> Finer control over the number of edges?

> Sampling of unlabelled structures?

3/15

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion

A new kind of DAG

Directed Ordered Acyclic Graphs (DOAGs)
DOAG = Unlabelled DAG

+ a total order on the outgoing edges of each vertex
+ only one sink and one source

6= 6= =

4/15

Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

>

5/15

Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

>

5/15

Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

>

5/15

Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

→

6/15

Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

1 2 3

→

6/15

Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

1 2 3

→

1 2

3
→

4

6/15

Recursive decomposition: multi-source DOAGs

The smallest source + a sub-DOAG;

q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

7/15

Recursive decomposition: multi-source DOAGs

The smallest source + a sub-DOAG;
q edges to sources;

s edges to internal vertices;(s + q
q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

7/15

Recursive decomposition: multi-source DOAGs

The smallest source + a sub-DOAG;
q edges to sources;
s edges to internal vertices;

(s + q
q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

7/15

Recursive decomposition: multi-source DOAGs

The smallest source + a sub-DOAG;
q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

7/15

Recursive decomposition: multi-source DOAGs

The smallest source + a sub-DOAG;
q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

7/15

Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.

8/15

Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.

8/15

Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.
8/15

Random sampling = COUNTING

Do the same, but backwards!

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(n−k−q

s)(s+q
q)s!

Dn,m,k
;

2. Sample a DOAG(n− 1,m− s− q, k− 1+ q);
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/15

Random sampling = COUNTING

Do the same, but backwards!

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(n−k−q

s)(s+q
q)s!

Dn,m,k
;

2. Sample a DOAG(n− 1,m− s− q, k− 1+ q);
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/15

Random sampling = COUNTING

Do the same, but backwards!

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(n−k−q

s)(s+q
q)s!

Dn,m,k
;

2. Sample a DOAG(n− 1,m− s− q, k− 1+ q);

3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/15

Random sampling = COUNTING

Do the same, but backwards!

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(n−k−q

s)(s+q
q)s!

Dn,m,k
;

2. Sample a DOAG(n− 1,m− s− q, k− 1+ q);
3. We already know the q largest sources;

4. Choose s internal vertices;
5. Connect them to the new sources.

9/15

Random sampling = COUNTING

Do the same, but backwards!

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(n−k−q

s)(s+q
q)s!

Dn,m,k
;

2. Sample a DOAG(n− 1,m− s− q, k− 1+ q);
3. We already know the q largest sources;
4. Choose s internal vertices;

5. Connect them to the new sources.

9/15

Random sampling = COUNTING

Do the same, but backwards!

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(n−k−q

s)(s+q
q)s!

Dn,m,k
;

2. Sample a DOAG(n− 1,m− s− q, k− 1+ q);
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.

9/15

Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity

arithmetic operations = O
(∑

v vertex
d2
v

)
where dv = out-degree of v.

In practice: a few milliseconds.

10/15

Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity

arithmetic operations = O
(∑

v vertex
d2
v

)
where dv = out-degree of v.

In practice: a few milliseconds.

10/15

Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity

arithmetic operations = O
(∑

v vertex
d2
v

)
where dv = out-degree of v.

In practice: a few milliseconds.

10/15

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion

What about labelled DAGs?

Idea: mark one source, and remove it.

6

1

3

4

5

7

8

9

10

2

Vn,m,k = #DAGs (one sink, k sources)

k · Vn,m,k =

n ·
∑
s+q>0

Vn−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)

11/15

What about labelled DAGs?

Idea: mark one source, and remove it.

6

1

3

5

7

8

9

10

2

4

Vn,m,k = #DAGs (one sink, k sources)
k · Vn,m,k =

n ·
∑
s+q>0

Vn−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)

11/15

What about labelled DAGs?

Idea: mark one source, and remove it.

6

1

3

5

7

8

9

10

2

4

Vn,m,k = #DAGs (one sink, k sources)
k · Vn,m,k =

n ·
∑
s+q>0

Vn−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)

11/15

Bounded degree sampling

What if we want DOAGs with out-degree ≤ d?

Dn,m,k =
∑

0<s+q

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

> Counting: O(N2d4)

> Sampling: O(Nd2)

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/15

Bounded degree sampling

What if we want DOAGs with out-degree ≤ d?

Dn,m,k =
∑

0<s+q

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

> Counting: O(N2d4)

> Sampling: O(Nd2)

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/15

Bounded degree sampling

What if we want DOAGs with out-degree ≤ d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

> Counting: O(N2d4)

> Sampling: O(Nd2)

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/15

Bounded degree sampling

What if we want DOAGs with out-degree ≤ d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

> Counting: O(N2d4)

> Sampling: O(Nd2)

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/15

Bounded degree sampling

What if we want DOAGs with out-degree ≤ d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

> Counting: O(N2d4)

> Sampling: O(Nd2)

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/15

Bounded degree sampling

What if we want DOAGs with out-degree ≤ d?

D(d)
n,m,k =

∑
0<s+q≤d

D(d)
n−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

> Counting: O(N2d4)

> Sampling: O(Nd2)

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.

12/15

Your next favourite wallpaper

Uniform DOAG
with m = 1000
and d = 10.

13/15

Outline

Background

Directed Ordered Acyclic Graphs

Extensions

Conclusion

Conclusion

> New model + new way of counting
> Control over the number of edges? ✓
> Unlabelled DAGs sampling? ➡ one step forward

Conclusion

> New model + new way of counting
> Control over the number of edges? ✓
> Unlabelled DAGs sampling? ➡ one step forward

Conclusion

> New model + new way of counting
> Control over the number of edges? ✓
> Unlabelled DAGs sampling? ➡ one step forward

> New model + new way of counting
> Control over the number of edges? ✓
> Unlabelled DAGs sampling? ➡ one step forward

> https://github.com/Kerl13/randdag
> martin.pepin@lip6.fr

https://github.com/Kerl13/randdag
mailto:martin.pepin@lip6.fr

References i

I. M. Gessel.
Counting acyclic digraphs by sources and sinks.
Discrete Mathematics, 160(1):253 – 258, 1996.
J. Kuipers and G. Moffa.
Uniform random generation of large acyclic digraphs.
Stat. and Computing, 25(2):227–242, 2015.

G. Melançon, I. Dutour, and M. Bousquet-Mélou.
Random generation of directed acyclic graphs.
Electron. Notes Discret. Math., 10:202–207, 2001.

References ii

R.W. Robinson.
Counting labeled acyclic digraphs.
New Directions in the Theory of Graphs, pages 239–273, 1973.

R. W. Robinson.
Counting unlabeled acyclic digraphs.
In Combinatorial Mathematics V, Lecture Notes in Mathematics, pages
28–43. Springer, 1977.

	Background
	Directed Ordered Acyclic Graphs
	Extensions
	Conclusion
	Appendix

