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Directed Acyclic Graphs

> A finite set of vertices V e.g. {1, 2, . . . ,n};
> a set of directed edges E ⊆ V× V;
> no cycles: v1 → v2 → · · · → vn = v1.

> If considered up to relabelling:
unlabelled DAGs
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State of the art

Labelled DAGs:
> Counting by number of vertices: [Rob73]

> Counting by number of edges: [Ges96]

•

> Uniform sampling: [MDB01], [KM15]

•

Unlabelled DAGs:
> Counting by vertices and
sources: [Rob77]

•

Asymptotics
> Cf. Sergey’s talk

Problems:
• Inclusion-exclusion
• No or little control

over the number of
edges
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Still missing

> Finer control over the number of edges?

> Sampling of unlabelled structures?

3/15
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A new kind of DAG

Directed Ordered Acyclic Graphs (DOAGs)
DOAG = Unlabelled DAG

+ a total order on the outgoing edges of each vertex
+ only one sink and one source

6= 6= =

4/15



Motivation

> Real-life implementations of
DAGs have an ordering; →

struct vertex {
int out_degree;
struct vertex *out_edges;

};

> Thememory layout of trees with
hash-consing have an ordering; →

<

×
5

×
xy×

xy

∼ ×
5 ×

xy

<

>
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Recursive decomposition: multi-source DOAGs

Idea: remove the source and see what is left.

→
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Recursive decomposition: multi-source DOAGs

The smallest source + a sub-DOAG;

q edges to sources;
s edges to internal vertices;(s + q

q

)
s! ways to arrange the two sets of edges;

Dn,m,k = #DOAGs with n vertices, m edges, k sources

=
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!
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Complexity of the counting

D1,m,k = 1{m=0∧k=1}

Dn,m,k = 0 when k ≤ 0

Dn,m,k =
∑
s+q>0

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s! when n > 1

Complexity
Computing Dn,m,k for all n, k ≤ N and m ≤ M takes O(N4M) arithmetic
operations.

In practice we reach M = 400, N = M+ 1.
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Random sampling = COUNTING

Do the same, but backwards!

3 4
1 2

1. Select (s,q) with
probability Dn−1,m−s−q,k−1+q(n−k−q

s )(s+q
q )s!

Dn,m,k
;

2. Sample a DOAG(n− 1,m− s− q, k− 1+ q);
3. We already know the q largest sources;
4. Choose s internal vertices;
5. Connect them to the new sources.
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Complexity of the sampling algorithm

> Selecting s and q: O((s+ q)2) arithmetic operations;
> the rest is cheap.

Complexity

# arithmetic operations = O
( ∑

v vertex
d2
v

)
where dv = out-degree of v.

In practice: a few milliseconds.
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What about labelled DAGs?

Idea: mark one source, and remove it.

6

1

3

4

5

7

8

9

10

2

Vn,m,k = #DAGs (one sink, k sources)

k · Vn,m,k =

n ·
∑
s+q>0

Vn−1,m−s−q,k−1+q

(
k− 1+ q

q

)(
n− q− k

s

)
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Bounded degree sampling

What if we want DOAGs with out-degree ≤ d?

Dn,m,k =
∑

0<s+q

Dn−1,m−s−q,k−1+q

(
n− k− q

s

)(
s+ q
q

)
s!

> Counting: O(N2d4)

> Sampling: O(Nd2)

> In practice we reached m = 1500 with d = 2 and m = 1000 with d = 10.
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Your next favourite wallpaper

Uniform DOAG
with m = 1000
and d = 10.
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Conclusion

> New model + new way of counting
> Control over the number of edges? ✓
> Unlabelled DAGs sampling? ➡ one step forward
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> New model + new way of counting
> Control over the number of edges? ✓
> Unlabelled DAGs sampling? ➡ one step forward

> https://github.com/Kerl13/randdag
> martin.pepin@lip6.fr

https://github.com/Kerl13/randdag
mailto:martin.pepin@lip6.fr
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